Dark Matter: MACHOs or WIMPs?

From the lecture series: Dark Matter, Dark Energy — The Dark Side of the Universe

By Sean Carroll, PhD, California Institute of Technology

In the hunt for dark matter, several candidates could make up this mysterious substance. One of the more popular ones are MACHOs, or Massively Compact Halo Objects. But can such objects really comprise 27% of the mass and energy in the observable universe?

A composite image showing the distribution of dark matter, galaxies, and hot gas in the core of the merging galaxy cluster Abell 520. The natural-color image of the galaxies was taken with NASA's Hubble Space Telescope and with the Canada-France-Hawaii Telescope in Hawaii.
The blend of blue and green in the center of merging galaxy cluster Abell 520 reveals that a clump of dark matter resides near most of the hot gas in the core of the galaxy cluster. (Image: NASA, ESA, CFHT, CXO, M.J. Jee (University of California, Davis), and A. Mahdavi (San Francisco State University)/Public domain)

Since we are convinced that dark matter does exist, we should begin thinking carefully about what it might be. We have good evidence from our investigations into big bang nucleosynthesis and the microwave background that dark matter is not ordinary matter, so we find ourselves driven to more exotic possibilities. But, first, we must consider the possibility that the dark matter that we need to explain the motions of things in the universe might somehow be in the form of stars, gas, dust, or collapsed objects that we don’t see because they are too small but are still made of ordinary stuff. Some of the ordinary matter in the universe is, in fact, dark. We don’t see the air in this room; we don’t see different forms of gas and dust in the universe.

Image of a galaxy cluster. Each blob is a galaxy, and the purple glow is from gas surrounding the cluster.
Galaxy cluster MOO J1142+1527; cluster galaxies are used to measure the ratio of matter in between the galaxies to matter in the galaxies. (Image by NASA/JPL-Caltech/Gemini/CARMA)

Let’s look at a cluster of galaxies since they are fair samples of the universe by which to determine the ratio of matter in between the galaxies to matter in the galaxies. In a typical cluster of galaxies, we know that most of the ordinary matter is not in the galaxies themselves; two-thirds of it is in between. Therefore, it should be the case that around two-thirds of the ordinary matter in the universe is not in galaxies. It’s not shining brightly in the form of stars, but as dilute gas in between. Even taking that into account, there is not enough stuff to make up the dark matter in the universe.

Hiding in Plain Sight

image of the Eagle Nebula
The famous “Pillars of Creation” in the Eagle Nebula are actually an example of a stellar nursery—a region in space where matter has contracted under its own gravitational pull to the point where it is beginning to ignite nuclear burning. (Image: By NASA, Jeff Hester, and Paul Scowen/Public domain)

What are the different ways in which you can take ordinary matter and hide it? These are called dark baryons, matter that started life as protons and neutrons but have come into a form where it’s not shining and as easy to see but is hidden from us somehow. The simplest way to do this is to imagine that we have dark stars.

A star that is a visible, bright star, starts life as a collection of gas and dust spread across some wide region of the universe, but it’s a little denser than its neighboring regions. So just as a galaxy is formed when a large amount of matter comes together under its mutual gravitational pull, stars are formed when these particulates come together under their mutual gravitational pull in a much smaller region of space.

This is a transcript from the video series Dark Matter, Dark Energy: The Dark Side of the Universe. Watch it now, on The Great Courses Plus.

So what kinds of stars are in the universe? Stars like the sun are easy to see because they are shining: They are giving off radiation. These stars are so massive that, at the center, the hydrogen from which they are formed is being fused. When hydrogen is turned into deuterium and then into helium, it gives off energy.

Gravity and Nuclear Fuel

The question is: Are there things like stars, things that are collapsed collections of ordinary matter of gas and dust and so forth, yet are not shining?

The question is: Are there things like stars, things that are collapsed collections of ordinary matter of gas and dust, and so forth, yet are not shining? Yes, there are objects like that. How many of them are there? What forms do they take? How did they get that way? The simplest way is to start with an ordinary star. Start with a star that is burning its fuel, as stars do not have an infinite amount of fuel to burn. The sun has been burning for about 4.5 billion years and has about another 5 billion years worth of fuel left, but eventually, it will burn out. All of its fuel will be turned into heavier elements.

If your star is low mass to begin with, the death of that star is fairly straightforward and calm. It just gives up. It doesn’t have enough nuclear fuel left. In the latter stages, it becomes a big red giant and it gives off mass slowly into the outer reaches of space. The core just slowly settles down into what we would call a white dwarf star—a collection of gas that has been pulled together by its mutual gravity but has used up its nuclear fuel.

Image of a normal star and a tiny white dwarf appearing next to it as a small dot
Sirius B, a white dwarf, is pointed out by the arrow to the lower left of the much brighter star Sirius A. White dwarfs are the leftover remnants of stars similar to our Sun. (Image:
NASA, ESA, H. Bond (STScI), and M. Barstow (University of Leicester)/Public domain)

When it uses up its nuclear fuel, there is pressure created by the temperature of the burning fuel. When all the fuel is used up, the pressure keeping the star big disappears and the star contracts. What is it that stops it from contracting? If a star uses up its fuel and collapses, eventually the electrons and protons and neutrons will become packed into an incredibly dense substance, called a white dwarf. Electrons are the particles that take up the most space and define how big the white dwarf will be. It’s the Fermi pressure—named after Enrico Fermi—that keeps the white dwarf from shrinking any more. The laws of physics say there is just nowhere to go. You can’t put those electrons on top of each other.

Learn more about the inventory of the universe, which is composed of three basic constituents

A slightly heavier star will not end up as a white dwarf. Larger stars can burn heavier elements into yet heavier elements in a way that a medium- or a low-mass star cannot. In that case, eventually, after the star puffs up and becomes a red giant, the core violently collapses. Their cores collapse very, very quickly to a small state and the outer layers are blown off in a supernova explosion.

Supernovas and Neutron Stars

Multi color telescope image of the Crab Nebula
The Crab Nebula is a result of a core collapse supernova. (Image:  NASA, ESA, J. Hester, A. Loll (ASU)/Public domain)

There are different ways that stars can explode to become a supernova. A core-collapse supernova, known as a Type II supernova, happens when a massive star has burned up its fuel, the core shrinks, and the outer layers are exploded off. What happens inside? Because there is a lot of energy in these particles, a proton and an electron can come together to form a neutron. A star that has an equal number of protons and electrons is electrically neutral. Those protons can come together with electrons and form neutrons, which take up less space. If all of the electrons and protons form neutrons, it results in a much more densely packed object: A neutron star.

A neutron star is just a collection of particles that have all been turned into neutrons. A several solar mass star can turn into a neutron star that is only tens of kilometers across, the size of a city here on earth—a very dense high-gravity situation. This leaves two different possible end states for big stars. If the star is big, but not too big, it will end up as a white dwarf. It’s white because the surface of the white dwarf is still pretty hot, so it gives off some light, but not very much. If white dwarfs are far away, we might not be able to see them. They could be candidates for some dark matter. Neutron stars are also very dim and they would also be candidates for dark matter.

Learn more about how gravity is just a manifestation of the curvature of spacetime

Brown Dwarfs and Gas Giants

Finally, what about very low-mass stars—stars that are so small that they are almost closer to being planets than to being stars? We have, in our solar system, gas giant planets like Saturn and Jupiter. These are not stars because they are not heavy enough to burn nuclear fuel inside. You can imagine objects that come from the condensation of gas and dust but weigh a hundred times the mass of Jupiter. That is not heavy enough to turn on nuclear fuel and start it becoming a star. Such an object is called a brown dwarf. It is an object, which is collapsed gas and dust. It’s star-like in its initial stages, but it’s never hot enough to begin burning, never hot enough to begin shining. What that means is there is a whole collection of possibilities for ways to take matter, ordinary matter, and squeeze it down into some small dense object that doesn’t give off a lot of light—a white dwarf, a brown dwarf, and a neutron star.

Massive Compact Halo Objects

People invented a clever nickname for these compact objects. They call them MAssive Compact Halo Objects, or MACHOs, for short.

Together, these are all candidates for a certain kind of dark matter. It’s baryonic dark matter because they all come from ordinary protons and neutrons. They are just ordinary matter hidden in a way that it’s hard to find them. People invented a clever nickname for these compact objects. They call them MAssive Compact Halo Objects, or MACHOs, for short.

MACHOs are a candidate for the type of ordinary matter that is in a hidden, hard-to-see form, and it would look kind of like dark matter. There are arguments that we can consider that have nothing to do with big bang nucleosynthesis or the microwave background as to why MACHOs are not a huge part of that 25% of the universe that scientists think is not ordinary matter. Even if we didn’t know from nucleosynthesis or the microwave background that the dark matter was not ordinary, could it be possible to rule out that possibility by looking at all the candidates one by one? Yes, we can.

Learn more about the constituents of ordinary matter: nuclei and electrons

First, let’s consider white dwarfs and neutron stars. White dwarfs and neutron stars are dim. If, say, our galaxy was filled with many, many white dwarfs and neutron stars, they would act much like dark matter and would be hard to see. They don’t interact with each other, they don’t run into each other that much, and they are very dense. A lot of mass can be packed into these kinds of objects. The problem is that we only have very specific ways to create white dwarfs and neutron stars. First, you have to make a big star. That star that shines has to eventually give off its nuclear fuel and condense into a white dwarf or a neutron star.

To imagine that the universe is full of white dwarfs and neutron stars, then it would have to be filled with all the matter that has been ejected into interstellar space during the process of forming the white dwarfs and neutron stars. That ejected mass isn’t there.

In the process of condensation, these stars give off a lot of mass. It’s a minority of the original mass of the star that ends up in the form of the white dwarf or the neutron star. Most of the original mass of that star gets ejected into interstellar space. To imagine that the universe is full of white dwarfs and neutron stars, then it would have to be filled with all the matter that has been ejected into interstellar space during the process of forming the white dwarfs and neutron stars. That ejected mass isn’t there. There is no way that we know of to efficiently take ordinary matter and convert any substantial fraction of it into white dwarfs and neutron stars.

How do we know there are not a lot of brown dwarfs in the universe? There could be, but our most reasonable extrapolations say that there are not.

For brown dwarfs, it’s a little bit more complicated. The brown dwarf is not something that you get by the end of a star; it’s something you create at the beginning as a very, very low-mass star. How do we know there are not a lot of brown dwarfs in the universe? There could be, but our most reasonable extrapolations say that there are not. We can figure out how many stars are made as a function of their mass. How many very massive stars are there? How many medium-mass stars are there? How many not-so-massive stars are there? From that, we can extrapolate to how many brown dwarfs there probably are. It turns out that the most reasonable extrapolations say there shouldn’t be that many brown dwarfs out there; this is not an airtight argument. We could certainly very well be surprised. After all, if the alternative is new laws of physics, we should be thinking very hard.

Learn more about how the expansion of the universe is speeding up rather than slowing down

Measuring with Microlensing

Image of the Einstein's Cross gravitational lens - four white dots in a diamond shape with a white dot in the center.
A gravitational lens is matter, between a distant light source and an observer, that is capable of bending the light from the source as the light travels towards the observer. In this example, known as Einstein’s Cross, a single quasar is imaged four times around a foreground galaxy. (Image: By NASA, ESA, and STScI/Public domain)

The amount of lensing due to one tiny little white dwarf or one tiny little brown dwarf or neutron star is very, very little. It would be difficult to notice a big deflection of a background object. However, if a white dwarf is aligned perfectly in between us and a background star, the background star will appear a little bit brighter than it would have without the lens. The problem there, of course, is how would we know if something were right in the middle? The good news is that MACHOs move around.

These MACHOs move through the halo of our galaxy, or in between our galaxy and other galaxies, allowing us to look at a whole bunch of background stars at once and wait. In events where the MACHO goes in front of the background star, the brightness of the background star will be seen to go up and then go down in very specific ways. It will go up and down in a perfectly symmetric way. Every wavelength of light coming from that star will be amplified and then go back down again in precisely the same way. Scientists searching for these microlensing events have found them. They observe millions of stars while waiting for a coincident brown dwarf or white dwarf to go by.

Learn more about how to measure the total energy density of the universe by observing the geometry of space

Scientists have found that there are not enough of these events to account for the dark matter of the universe. If there were enough brown dwarfs, white dwarfs, or neutron stars to be a substantial fraction of the dark matter, scientists would have seen them using microlensing.

How to Detect a Black Hole

An artist's depiction of matter spinning around a black hole and forming an accretion disk
Matter spinning around a black hole will form an accretion disk and heat up, giving off X-rays. (Image:  Marc Ward/Shutterstock)

There is, of course, one other way to make very dense matter in the universe. If you have white dwarfs as the endpoints of medium-mass stars, neutron stars as the endpoints of more massive stars, what happens if we squeeze those neutrons even more? According to general relativity, something will happen if we keep adding mass to a neutron star; it can’t last forever. What we think happens is that it just collapses into a singularity with a gravitational field that’s so strong that light itself cannot escape. A black hole is the endpoint of gravitational collapse where gravity is as strong as it can possibly be. You might think black holes would be hard to detect in the universe, but there are ways to detect gravitational fields in the universe, even if the thing creating the gravitational field is not visible.

Learn more about the origin of dark matter and light elements

Ordinary matter spinning around the black hole can either be directly visible or it can give off light as it’s spinning. If you have a small black hole at the end of the lifecycle of a massive star, the stuff that is spiraling into the black hole will heat up and give off X-rays.

Inside Supermassive Black Holes

There is another class of black holes called supermassive black holes that are a million or 10 million times the mass of the sun. Supermassive black holes live at the center of galaxies and we can detect them because stars orbit them. We can see the stars going in an ellipse around nothing, around a region of space where there isn’t anything there.

The only way to have that much mass—over a million times the mass of the sun—into a tiny region is for it to be a black hole. There are stellar-sized, supermassive black holes that exist. Could either one of these be an important part of dark matter? The answer, again, is probably not. For stellar-sized black holes, all of the arguments that we used for MACHOs still apply.

We don’t see enough microlensing events from black holes or from anything else to be a substantial part of the dark matter.

Number one, we don’t know how to make them. You could make them from stars, but that would eject a lot of mass. Number two, they would be MACHOs; they would lead to microlensing events. We don’t see enough microlensing events from black holes or from anything else to be a substantial part of dark matter, however, we have supermassive black holes. Could the dark matter be a million solar mass black holes? A million solar mass black holes are difficult to hide. Indeed, we couldn’t see any of them, but as one moves through a collection of stars, it would cause a lot of disruption to the total dynamics of that system of stars.

10 Million Solar Masses

It sounds like 10 million solar masses is a lot of mass, but remember that the mass of a galaxy is something like a trillion solar masses. Even though supermassive black holes exist, they are a tiny, tiny fraction of the total mass of a galaxy. They are not an important part of the dark matter. The remaining possibility for black holes is that there are primordial black holes; some process in the very early universe created very tiny black holes. Unfortunately, we have no way of ruling out the possibility that the dark matter is tiny black holes.

Learn more about how the density and distribution of dark energy remain the same across all of space­time

So we’re back once again to the possibility that the dark matter is particles.

If these black holes formed before big bang nucleosynthesis, they would not count toward the counting of ordinary matter in the universe. However, once you make the dark matter of tiny little black holes, it’s practically indistinguishable for making the dark matter out of particles. They are tiny, individual objects; they are not big stellar-sized objects. We can’t look for them using microlensing. So we’re back once again to the possibility that the dark matter is particles.

Common Questions About Dark Matter

Q: Simply put, what exactly is Dark Matter?

Dark Matter is essentially the opposite of the matter we can see. It can be conceived of as the cushion that allows all of reality to exist relative to itself.

Q: What is the difference between dark matter and anti-matter?

Anti-matter is different from dark matter in that it behaves almost exactly like regular matter, but with opposite polarities and other exotic aspects, while dark matter is wholly incongruous with matter at all and is a complete mystery.

Q: Is the speed of light faster than the speed of dark?

According to some studies, darkness (which might be dark matter) travels just as fast as light, if not faster at times.

Q: Is dark matter the same as a black hole?

No. Statistical analysis showed that the majority of the dark matter (at least 60%) is not made of black holes, according to the studies conducted by Zumalacárregui.

This article was updated on September 15, 2020

Keep Reading
Dark Matter Researched through Computer Simulation of 8 Million Universes
Dark Matter and the Earliest Stars
Mysteries of the Universe: Is Dark Matter Lumpy Or Smooth?